

GRADE - XII	MT- 1[2024-2025]	Max Marks - 20
10/06/2024	PHYSICS	TIME – 50 min

	Section A	
1	(c)3×10 ⁷ Vm ⁻¹	1
2	(b) cancels the potential barrier	1
3	(c)less than 1	1
4	C) Assertion is correct but Reason is incorrect.	1
	Section B	
5	E = E = E = E = E = E = E = E = E = E =	2

	whereas the diode D2D2becomes reverse biased and conducts current during this cycle.	
	Section D	
8		5
	Electric flux is defined as the measure of count of number of electric field	
	lines crossing an area.	
	Electric flux $\phi = EAcos\theta$	
	SI unit of electric flux is Nm2/C	
	The law states that the total flux of the electric field E over any closed	
	surface is equal to $1\varepsilon 0$ times the net charge enclosed by the surface.	
	φ=μευ	
	$2\pi r$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
	The electric flux (ϕ) through curved surface = $\oint Edscos\theta$	
	$\phi = \oint Eds \left[\because \theta = 0; \cos \theta = 1 \right]$	
	=E(2rnI) [The surface area of the curved part is] since \rightarrow E and \rightarrow ds are	
	right angles $2\pi rl$ to each other, the electric flux through the plane	
	caps =0.	
	\therefore Total flux through the Gaussian surface, $\phi = E(2\pi r l)$. The net charge	

	enclosed by Gaussian surface is, $q = \lambda I$	
	∴ By Gauss's law,	
	=E(2πrl)λlε0 or E=λ2πε0r	
	Section E	
	Case Study Based Question: Read the Case Study given below and answer the question that follow:	1X4=4
9	1.d	
	2.c	
	3.a	
	4.b	
	Or	
	4.d	